Crenanos C. IT., Wxan [, 3axapos T. 3. H ap. ITomxoas! K paclo3HABAHHIO H CHHTE3Y PedH
JUIf SKYTCKOTO S3BIKA HA OCHOBe HeHpoceTell apxHTekTyphl Transformer

2025;(4):56-78

VIIK 004.8; 81°32 @ 013
https://doi.org/10.25587/3034-7378-2025-4-56-78 =

NC

Original article

Transformer-Based Neural Network Approaches
for Speech Recognition and Synthesis in the Sakha Language

Sergei P. Stepanov! © 3, Dong Zhang* ®, Timur Z. Zakharov',
Altana A. Alekseeva’, Vladislav L. Aprosimov’, Djuluur A. Fedorov’,
Vladimir S. Leveryev' , Tuygun A. Novgorodov', Ekaterina S. Podorozhnaya’
'M.K. Ammosov North-Eastern Federal University,

Yakutsk, Russian Federation
’Qufu Normal University, Qufu, Shandong, PR. China
04 sp.stepanov(@s-vfu.ru

Abstract

Recent breakthroughs in artificial intelligence and deep learning have fundamentally
transformed the landscape of spoken language processing technologies. Automatic
speechrecognition (ASR)and text-to-speech (TTS)synthesishaveemergedasessential
components driving digital accessibility across diverse linguistic communities. The
Sakha language, representing the northeastern branch of the Turkic language family,
continues to face substantial technological barriers stemming from insufficient digital
resources, limited annotated corpora, and the absence of production-ready speech
processing systems. This comprehensive investigation examines the feasibility and
effectiveness of adapting contemporary transformer-based neural architectures for
bidirectional speech conversion tasks in Sakha. Our research encompasses detailed
analysis of encoder-decoder frameworks, specifically OpenAI’s Whisper large-v3
and Meta’s Wav2Vec2-BERT for voice-to-text transformation, alongside Coqui’s
XTTS-v2 system for text-to-voice generation. Particular emphasis is placed on
addressing linguistic and technical obstacles inherent to Sakha, including its complex
agglutinative morphological structure, systematic vowel harmony patterns, and
distinctive phonemic inventory featuring sounds absent from most Indo-European
languages. Experimental evaluation demonstrates that comprehensive fine-tuning
of Whisper-large-v3 achieves exceptional recognition accuracy with word error
rate (WER) of 8%, while the self-supervised Wav2Vec2-BERT architecture attains
13% WER when augmented with statistical n-gram language modeling. The
neural synthesis system exhibits robust performance despite minimal training data
availability, achieving average loss of 2.49 following extended training optimization
and practical deployment via Telegram messaging bot. Additionally, ensemble meta-
stacking combining bothrecognition architectures achieves 27% WER, demonstrating
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effective complementarity through learned hypothesis arbitration. These findings
validate transfer learning methodologies as viable pathways for developing speech
technologies serving digitally underrepresented linguistic communities.
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AHHOTAIAA

Hogelimue HocTHKEeHHA B 00J1aCTH HCKYCCTBEHHOI'O HHTEIIEKTa H IIIyOOKOTro 00-
YyUeHHA KapAHHAILHO Tpeo0pa30BalH JaHAmMAPT TeXHOIOTHH 00pa0OTKH YCTHOH
peun. ABTOMaTHUecKoe pacmo3HaBaHHe peuH (ASR) u cuHTe3 peun (TTS) cramu
KITFOUeBEIMH KOMIIOHEHTAMH, 00eCIeUHBAIOIMHIMH IHQPOBYI NOCTYIHOCTH NI
PAa3IHYHBIX SA3BIKOBBIX COOOIIECTB. SIKYTCKHH S3BIK, MPENCTABILAIOINHHI CeBepo-
BOCTOYHYIO BETBb TIOPKCKOH S3BIKOBOH CEMBH, IIPOIO/DKAET CTAIKHBATHCA CO 3HA-
UHTEIbHBIMH TEXHOIOTHUeCKHMH OapbepaMH, BBI3BAHHBIMH HENOCTATOYHOCTBIO
IHQPOBEIX PECypPCcOB, OTPAaHHYEHHOCTHI0 Pa3MeUeHHEBIX KOPIIYCOB H OTCYTCTBHEM
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TOTOBBIX K IIPOMBINUICHHOMY HCIIONB30BAHHIO CHCTeM 00pa0oTKH pedH. B maHHOM
KOMIUIEKCHOM HCCJIe[JOBAHHH H3ydaeTcsl Ienecoo0pa3HOCTh H 3(p(eKTHBHOCTh
aJlanTalHH COBPEMEHHBIX HeHpOCeTeBBIX apXHTeKTyp Ha OCHOBe TpaHC(OpMepoB
JUIA 3a7ad JBYHAIIPABIEHHOIO Pe4eBOr0o Ipeo0pa30oBaHud B AKYTCKOM A3bIke. Hama
pabota BKIrOUaeT JeTalnbHBIH aHamH3 encoder-decoder mozeneti, a mmeHHO: Whisper
large-v3 ot OpenAl u Wav2Vec2-BERT or Meta ama mpeoOpa3oBaHHS roloca B
TeKCT, a Takke cucTeMbl XTTS-v2 ot Coqui A7 TeHepallHH pedr 13 Tekcta. Ocoboe
BHHMAaHHE VIeTAeTCsA pellleHHI0 THHTBHCTHYeCKHX H TeXHHYeCKHX IpoliieM, IIpH-
CYIIHX AKYTCKOMY SA3BIKY, BKIIOUAs ero CIOKHYI0 arTIIOTHHAaTHBHYI MOP(OIOru-
YeCKYI0 CTPYKTYPY, CHCTeMHBIe 3aKOHBI CHHIAPMOHH3Ma H YHHKAIBHEIH ()OHEeMHBIH
COCTaB, COZlepIKAaIlUil 3BYKH, OTCYTCTBYIOIHE B OOIBINHHCTBE HHIOSBPOIEHCKHX
A3BIKOB. DKCIIepHMEHTAIbHA] OlleHKa II0KA3EIBaeT, UTO IIONHOe J000yUeHHe MOIeTH
Whisper-large-v3 o0eclieunBaeT HCKIFOUHTEIFHO BEICOKYIO TOUHOCTEH paclio3HaBa-
HuA ¢ K03 dummenTom ommudok mo cioraM (WER) 8%, B To BpeMs Kak camoo0y-
uaemas apxurekTypa Wav2Vec2-BERT nocturaer WER 13% IIpH HCIIONB30BaHHH
CTaTHCTHYECKOI'0 N-IPaMMHOTO I3BIKOBOIO MOIenHpoBaHu:A. HelpoceTeBas CHCTe-
Ma CHHTe3a JeMOHCTPHpPYeT YCTOHYHBYIO IIPOH3BONHTEIBLHOCTE JaXKe IIPH OrpaHH-
YeHHOM 00BbeMe 00YJArOIIIX JaHHBIX, JOCTHTas CPeHeTo 3HadeH A (PYHKITHH I10Teph
2.49 moclle AMHTeNRHOH ONTHMH3AIHH O00ydeHHA H MPAKTHIeCKOrO pa3BepTHIBAHHUSA
uepe3 00T B MecceHmKepe Telegram. Kpome Toro, aHcaMOIeBbIit MeTa-CTIKHHL, 005-
eTHHSIONMAHN 00e apXHTeKTyPHl pacllo3HABaHH, TO3BOIAeT JocTHas WER 27%, uTo
JIOKa3bIBaeT HX 3(p(peKTHBHYIO B3aHMOJOIIONHAEMOCTE depe3 apOuTpask rumores. ITo-
Jy4eHHbIe pe3yIbTarhl IIOATBeP/KIal0T, 9YT0 MeTOB! TpaHCc(epHOro 00yJeHH Ipei-
CTaBILAIOT OO0t KI3HECIIOCOOHBIH Iy Th A7 CO3JaHHA peueBBIX TEXHOIOTHI, 00CTy-
JKHUBAKOIIHX MH(POBO HEOCTATOUHO IIPe/ICTaBIeHHEIEe A3BIKOBEIE COOOMIECTRa.
KuiroueBnle €10Ba: AKYTCKHH S3bIK, aBTOMAaTHUECKOE pacllO3HaBaHHe PEeUH, CHHTE3
pedu U3 TekcTa, HelipoHHBIe ceTH, Whisper, Wav2Vec2-BERT, Coqui XTTS-v2, ap-
xurekTypa Transformer, MalopecypcHBIe A35IKH, TpaHC(epHOE 00yUeHHe, arTI0TH-
HAaTHBHAA MOp(oIorus
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Introduction

The proliferation of voice-enabled computing interfaces has
fundamentally reshaped human-machine interaction paradigms across
virtually every domain of modern life. Intelligent virtual assistants, automated
transcription services, real-time translation systems, and accessibility tools
for individuals with disabilities increasingly depend on sophisticated speech
processing algorithms capable of accurately interpreting and generating natural
language in spoken form. These technologies have achieved remarkable
performance levels for widely-spoken languages supported by extensive
digital resources, yet remain largely inaccessible to speakers of linguistically
marginalized communities worldwide [1].

The development of automatic speech recognition systems for
underrepresented languages presents multifaceted challenges encompassing
both technical and linguistic dimensions. From a technical perspective, the
scarcity of annotated speech corpora, limited availability of text resources
for language modeling, and absence of standardized evaluation benchmarks
substantially constrain the applicability of data-intensive deep learning
approaches that have proven successful for high-resource languages.
Linguistically, many underrepresented languages exhibit structural properties
that diverge significantly from the Indo-European languages dominating current
speech technology research, necessitating specialized modeling strategies [2].

The Sakha language presents a particularly compelling case study
for investigating low-resource speech technology development. As
the northernmost representative of the Turkic language family, spoken
by approximately 450,000 people primarily in the Republic of Sakha
(Yakutia) within the Russian Federation, Sakha occupies a unique position
both geographically and linguistically. The language exhibits distinctive
phonological characteristics that differentiate it substantially from its Turkic
relatives, having undergone extensive phonetic evolution during centuries of
relative isolation in subarctic conditions [3].

Phonologically, Sakha maintains an extensive vowel inventory
encompassing both short and long variants with systematic phonemic length
distinctions affecting lexical meaning. The language preserves productive
vowel harmony patterns governing the distribution of front and back
vowels across morpheme boundaries, creating long-distance phonotactic
dependencies that pose challenges for acoustic modeling approaches
optimized for languages lacking such phenomena. Additionally, Sakha
has developed several consonantal innovations absent from other Turkic
languages, including distinctive realizations of historical uvular and velar
segments [4].
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Orthographically, the Sakha writing system employs several graphemes
absent from standard Russian Cyrillic, representing sounds requiring
specialized acoustic modeling: ‘e’ denoting the front rounded mid vowel
[ee], ‘y’ representing the front rounded high vowel [y], ‘#” marking the velar
nasal consonant [1], ‘5" indicating the voiced uvular fricative [], and ‘&’
signifying the glottal fricative [h]. Automatic recognition systems frequently
confuse these characters with visually or phonetically similar alternatives
from Russian, substantially degrading transcription accuracy and producing
outputs that violate Sakha phonotactic constraints. Phonologically, Sakha
maintains an extensive vowel inventory encompassing four diphthongs, short
and long variants with systematic phonemic length distinctions affecting
lexical meaning [5; 6].

Furthermore, Sakha demonstrates pronounced agglutinative
morphological structure characteristic of Turkic languages, wherein lexical
stems concatenate with extensive chains of suffixes encoding diverse
grammatical information including case, number, possession, tense, aspect,
mood, and evidentiality. This productive word-formation mechanism
generates substantial vocabulary expansion, with theoretically unlimited
numbers of distinct word forms derivable from individual roots. Such
morphological complexity challenges conventional recognition approaches
relying on fixed lexicons, as out-of-vocabulary rates become prohibitively
high without appropriate subword modeling strategies [7].

This investigation pursues dual complementary objectives:
systematically evaluating state-of-the-art neural architectures for Sakha speech
processing and establishing reproducible benchmarks facilitating future
research advancement. We comprehensively assess recognition performance
across multiple training configurations examining the contributions of
individual architectural components, while simultaneously developing
synthesis capabilities demonstrating viable quality despite severely limited
acoustic training data. The methodological framework and empirical findings
presented herein provide foundational resources supporting continued
development of speech technologies serving the Sakha-speaking community.

Related Works

Substantial research investment has driven remarkable progress in
speech technology capabilities over recent decades, though benefits remain
unevenly distributed across the world’s linguistic diversity. This section
surveys relevant prior work addressing speech recognition and synthesis
for resource-constrained languages, with particular attention to approaches
applicable to Turkic language family members sharing structural similarities
with Sakha.
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Neural Approaches to Automatic Speech Recognition

Deep learning methodologies have fundamentally restructured automatic
speech recognition system design over the past decade. Traditional hybrid
architectures combining hidden Markov [8] models with Gaussian mixture
acoustic models have progressively yielded to unified neural frameworks
capable of direct acoustic-to-linguistic mapping without intermediate phonetic
representations. Contemporary end-to-end systems leverage attention
mechanisms enabling dynamic alignment between variable-length acoustic
observation sequences and corresponding textual outputs [9].

Self-supervised representation learning has emerged as particularly
promising paradigm for resource-constrained recognition scenarios. These
approaches exploit large quantities of unlabeled audio through contrastive
or predictive pretraining objectives, learning general-purpose acoustic
representations subsequently fine-tuned on limited transcribed data for
specific target languages. Research demonstrates that representations acquired
through such procedures transfer effectively across typologically diverse
languages, enabling competitive recognition performance with dramatically
reduced annotation requirements [10].

The Whisper system developed by OpenAl represents current state-of-the-
art in multilingual speech recognition, trained on approximately 680,000 hours
of weakly-supervised audio-text pairs harvested from internet sources spanning
nearly 100 languages. The architecture implements sequence-to-sequence
transduction via transformer encoder-decoder networks [11], demonstrating
remarkable robustness to acoustic variation including background noise,
reverberation, and speaker diversity. However, performance varies substantially
across languages depending on representation within training data, with many
underrepresented languages receiving minimal coverage [12].

Speech Technology for Turkic Languages

Languages belonging to the Turkic family share numerous structural
properties presenting systematic challenges for speech technology adaptation.
Vowel harmony systems require acoustic models capable of capturing long-
distance phonotactic dependencies spanning multiple syllables, as vowel
quality in suffixes depends on preceding vowels within the same phonological
word. Agglutinative morphology produces extensive lexical inventories with
highly skewed frequency distributions, wherein most word types occur rarely
while substantial probability mass concentrates on common function words [13].

Prior investigations have explored multilingual training strategies
leveraging cross-linguistic similarities among related Turkic languages.
Shared phonetic inventories, similar phonotactic constraints, and parallel
morphological processes enable positive transfer during model adaptation,
though language-specific fine-tuning remains essential for achieving
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optimal performance. Research on Kazakh, Kyrgyz, Uzbek and Turkish
has demonstrated that models pretrained on related languages substantially
outperform those initialized from unrelated linguistic material [14].

Text-to-speech synthesis for Turkic languages has received
comparatively limited research attention, though recent work demonstrates
promising results using neural vocoder approaches [15-19]. Zero-shot
synthesis strategies utilizing phonetic transcription intermediaries have
shown particular promise for extending coverage to new languages without
requiring parallel audio-text training data, leveraging shared phonetic spaces
across related languages [20].

Sakha Language Resources and Prior Work

Despite growing interest in documenting and digitalizing the Sakha
language, available speech resources remain substantially limited compared
to high-resource languages and even relative to some other Turkic family
members (Table 1). The Mozilla Common Voice project [21] includes a Sakha
contribution comprising approximately 20 hours of crowdsourced recordings
with corresponding transcriptions, representing the largest publicly available
annotated corpus. Additional resources exist within academic institutions but
remain restricted in accessibility.

Table 1
Overview of available Sakha language speech resources
Tabmuma 1
O030p TOCTYNHBIX pe4eBbIX PeCYPCOB AKYTCKOIO A3bIKA
Resource Name Content Description Volume | Access Status
Mozilla Common Crowdsourced ~10 Open access
Voice (Sakha) recordings with verified hours
transcriptions
NEFU Internal Studio-quality readings ~5 hours | Institutional
Corpus of literary texts
Augmented Training | Original recordings with 29,000 Institutional
Set noise augmentation samples

Prior speech technology research specifically targeting Sakha remains
limited, with most relevant work addressing broader Turkic language coverage
without detailed analysis of Sakha-specific challenges. This investigation
aims to address this gap by providing systematic evaluation of contemporary
neural approaches adapted specifically for Sakha linguistic characteristics.
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Materials and Methods

Corpus Development and Data Preparation

Effective training of neural speech processing systems requires carefully
curated datasets meeting stringent quality standards. Our corpus development
efforts combined multiple data sources while implementing rigorous
preprocessing protocols ensuring consistency across experimental conditions.

Raw audio recordings underwent systematic normalization procedures
prior to model training. All files were resampled to 16 kHz mono format using
high-quality interpolation algorithms implemented in the librosa library.
Silence segments exceeding 500 milliseconds duration were trimmed from
recording boundaries, while amplitude normalization ensured consistent
volume levels across heterogeneous source materials. Audio quality filtering
removed samples exhibiting excessive background noise, clipping artifacts,
or unintelligible speech segments.

Textual transcriptions received comprehensive orthographic
standardization addressing inconsistencies in punctuation conventions,
numeral representation formats, and abbreviation usage. Character vocabulary
construction enumerated all unique graphemes occurring within the training
partition, enabling appropriate tokenizer configuration for Sakha-specific
characters. The base dataset comprised approximately 6,710 utterance-
transcription pairs drawn from Common Voice contributions and institutional
recordings.

Data augmentation procedures [22] expanded training set diversity
through systematic acoustic transformations. Augmentation strategies
included additive noise injection at varying signal-to-noise ratios, tempo
perturbation within +10% range, and pitch shifting across semitone intervals.
The augmented collection totaled approximately 29,000 training samples,
substantially increasing effective dataset size while maintaining linguistic
content validity.

For synthesis system development, specialized data collection
targeted single-speaker consistency essential for voice cloning applications.
Recordings captured readings of Sakha literary texts performed by university
students under controlled acoustic conditions. Quality requirements mandated
minimal background noise, consistent microphone positioning, and precise
utterance boundary segmentation. The final synthesis training set comprised
approximately 90 minutes of validated single-speaker audio.

Speech Recognition System Architectures

Whisper Architecture and Adaptation

The Whisper system implements sequence-to-sequence speech
recognition via transformer encoder-decoder networks trained on massive
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multilingual corpora. Acoustic inputs undergo mel-spectrogram feature
extraction computing 80 frequency bins over 25-millisecond windows with
10-millisecond frame shifts at 16 kHz sampling rate. The encoder module
processes spectrogram representations through 32 stacked transformer layers
employing multi-head self-attention mechanisms, producing contextualized
frame-level embeddings capturing both local acoustic detail and broader
temporal context [12].

The decoder component generates output token sequences
autoregressively, attending to encoder representations through cross-
attention layers while maintaining causal masking preventing information
leakage from future positions. Tokenization employs byte-pair encoding
[23] with vocabulary size of 50,000 subword units supporting multilingual
text generation. The complete Whisper-large-v3 configuration comprises
approximately 1.55 billion trainable parameters distributed across encoder
and decoder modules.

Our adaptation experiments examined multiple fine-tuning
configurations to identify optimal strategies for Sakha recognition. The
primary experimental condition performed comprehensive parameter updates
across all model components, while comparison conditions explored partial
adaptation strategies including encoder freezing and selective layer training.
Training utilized AdamW optimization with learning rate warmup and cosine
decay scheduling.

Wav2Vec2-BERT Architecture

The Wav2Vec2-BERT framework combines self-supervised acoustic
representation learning with transformer-based sequence modeling (Table 2).
Unlike Whisper’s spectrogram-based approach, Wav2Vec2 processes raw audio
waveforms through convolutional feature extraction layers producing latent
representations at 50 Hz frame rate. These representations undergo quantization
via learned codebook vectors enabling contrastive pretraining objectives [24].

The transformer encoder processes quantized representations through
multiple self-attention layers, learning contextualized embeddings capturing
phonetic and prosodic information. During fine-tuning, a linear projection
layer maps encoder outputs to character-level probability distributions, with
connectionist temporal classification (CTC) loss [25] enabling alignment-free
training without requiring frame-level phonetic annotations.

Recognition accuracy benefits substantially from integration with
external language models providing linguistic context during decoding. Our
experiments employed KenLM toolkit for training n-gram language models on
Sakha text corpora, with shallow fusion combining acoustic model posteriors
and language model probabilities during beam search decoding.
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Table 2
Comparative overview of recognition system architectures
Ta0muma 2
CpaBHHTe/ILHBIH 0030p APXHTEKTYP CHCTEM PACIO3HABAHHA
Architecture Primary Advantages Notable Limitations
Whisper- Extensive multilingual High computational
large-v3 pretraining; robust noise requirements; substantial
handling; integrated fine-tuning needed for rare
language identification; languages; large model
strong cross-lingual transfer size
Wav2Vec2- Effective self-supervised Requires substantial
BERT learning; efficient acoustic unlabeled audio; CTC
feature extraction; flexible limitations for long
LM integration; moderate sequences; alignment
resource requirements challenges

Speech Synthesis System Configuration

Text-to-speech synthesis capabilities utilized the XTTS-v2 framework
developed by Coqui, designed specifically for cross-lingual voice cloning
scenarios with minimal target language training data. The architecture
implements neural text-to-spectrogram conversion followed by vocoder-
based waveform reconstruction [17], enabling high-fidelity speech generation
from textual inputs [26].

Text encoding employs byte-pair tokenization supporting multilingual
character inventories. For Sakha adaptation, tokenizer vocabulary required
extension incorporating language-specific graphemes absent from default
character sets. Custom preprocessing rules handled numeral verbalization,
abbreviation expansion, and punctuation normalization according to Sakha
orthographic conventions.

The acoustic modeling component predicts mel-spectrogram frames
from encoded text representations using attention-based sequence-to-
sequence architecture. Speaker conditioning enables voice characteristic
control through reference embeddings extracted from short audio samples,
supporting zero-shot voice cloning for new speakers not present in training
data. The neural vocoder reconstructs time-domain waveforms from generated
spectrograms, producing natural-sounding speech output.
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Experimental Results and Discussion

Speech Recognition Performance Evaluation

Recognition system evaluation employed word error rate (WER) as
the primary accuracy metric, computing minimum edit distance between
hypothesized and reference transcriptions normalized by reference word
count. This standard metric captures substitution, insertion, and deletion errors
providing comprehensive assessment of transcription quality. Experiments
systematically varied training configurations to isolate contributions of
individual factors.

Table 3
Whisper-large-v3 recognition results across training configurations

Ta0mmma 3
Pezynbrarhel pacnosHaBaHuda Mogead Whisper-large-v3
IIPH Pa3IHYHBIX KOH(PATYPANHAX 00ydeHAA
Training Configuration WER Loss Analysis Notes
Complete model fine- 0.08 <0.1 Optimal configuration
funing
Encoder parameters 0.42 ~0.2 Substantial degradation
frozen
Training with noise 0.35 - Counterproductive effect
augmentation

Complete model adaptation yielded markedly superior results compared
to partial fine-tuning strategies. The comprehensive parameter update
condition achieved word error rate of 8%, representing exceptional accuracy
for a low-resource language scenario. Training loss converged below 0.1,
indicating successful optimization without overfitting concerns.

Complementary experiments with Whisper-small architecture
(approximately 244 million parameters) explored computational efficiency
trade-offs for resource-constrained deployment scenarios. Training utilized
approximately 12.0 hours of combined audio data from Common Voice corpus
[21, 27] including original recordings and augmented samples. The optimal
configuration achieved 47% WER through comprehensive hyperparameter
optimization including learning rate scheduling, gradient accumulation,
and curriculum learning strategies. While exhibiting higher error rates
than the large model variant, Whisper-small demonstrates viable accuracy
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for practical applications requiring reduced computational overhead, with
training completable on consumer-grade GPU hardware within reasonable
timeframes.

Freezing encoder parameters during fine-tuning — a common strategy
for reducing computational requirements and preventing catastrophic
forgetting — produced approximately five-fold error rate increase to 42%. This
substantial degradation demonstrates that pretrained acoustic representations,
while providing valuable initialization, require significant modification for
effective Sakha speech processing. The encoder evidently performs critical
acoustic normalization and phonetic discrimination functions that cannot be
adequately compensated through decoder adaptation alone.

Contrary to initial expectations, noise augmentation during training
degraded rather than enhanced recognition performance, producing 35%
error rate. Detailed error analysis suggests that artificially introduced
acoustic distortions interfered with the model’s capacity to learn Sakha-
specific phonemic contrasts, particularly affecting discrimination between
phonologically similar vowel pairs distinguished primarily by subtle formant
frequency differences.

Table 4
Wav2Vec2-BERT recognition results with language model integration

TaGmuma 4
PezyabTarhl pacnozHaBaHuda Mogean Wav2Vec2-BERT
¢ HHTerpanuei A3bIK0BOH MOIeIH
System Configuration WER Analysis Notes

Acoustic model with KenlLM language model| 0.13 | Best configuration
fusion
Acoustic model only (no LM integration) 0.22 | Baseline reference

The self-supervised Wav2Vec2-BERT architecture demonstrated
competitive recognition performance, particularly when augmented with
statistical language modeling. Integration of n-gram language model
probability estimates during beam search decoding provided -crucial
disambiguation capabilities for morphologically complex word forms,
reducing error rate by approximately 40% relative to acoustic-only baseline
from 22% to 13% (Table 6).

Systematic error analysis across all recognition systems revealed
characteristic failure patterns reflecting Sakha linguistic complexity. Word-
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level substitutions predominantly affected morphologically complex forms
where suffix boundaries require precise acoustic discrimination. Deletion
errors frequently omitted grammatical markers in agglutinative constructions,
while insertion errors typically involved spurious word boundaries within
long compound formations. These patterns underscore the importance of
language model integration for morphologically rich languages and identify
priorities for future corpus expansion targeting underrepresented grammatical

constructions.

This finding underscores the importance of linguistic context modeling
for agglutinative language recognition, where acoustic ambiguity between
phonetically similar suffix variants requires resolution through higher-level
language structure knowledge. The result suggests promising directions for
future work incorporating more sophisticated language models trained on

larger Sakha text corpora.

Further investigation explored ensemble strategies combining
Wav2Vec2-BERT and Whisper outputs through meta-stacking methodology
[28: 29; 30]. This approach employs a logistic regression meta-classifier
trained to select the optimal transcription hypothesis for each utterance based
on features extracted from both model outputs, including hypothesis length,
inter-model Levenshtein distance, and word-level agreement metrics. The
ensemble system achieved substantial performance improvements, reducing
WER to 27% on the Sakha test set compared to individual model baselines,
demonstrating effective complementarity between architectural approaches.

Table 5

Ensemble recognition results via meta-stacking

Tabmuma 5

PE3y.JILTaTl)I pacmo3sHaBaHHA aHcaMOIeBoH MOJ€eIH
C HCII0JIb30BAaHHEM MeTAa-CTIKHHI A

Model Configuration WER Improvement
Wav2Vec2-BERT standalone 0.34 Baseline
Whisper fine-tuned standalone 0.37 Baseline
Meta-stacking ensemble 0.27 21% relative reduction

The meta-stacking

ensemble demonstrates that combining
complementary model architectures through learned arbitration achieves
superior recognition accuracy compared to either constituent system operating
independently. The logistic regression classifier achieved approximately
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85-90% accuracy in selecting the superior hypothesis, effectively leveraging
the distinct error patterns exhibited by Wav2Vec2-BERT and Whisper across
different acoustic conditions and morphological structures.

Speech Synthesis Quality Assessment

Synthesis system evaluation monitored training loss progression as
quantitative indicator of acoustic modeling quality, with lower loss values
reflecting improved alignment between generated and target spectral
representations. Additionally, perceptual assessment examined naturalness,
intelligibility, and phonetic accuracy of synthesized outputs.

Table 6
XTTS-v2 synthesis system training progression
Ta0nuua 6
IIponecc odyuenns cucreMbl cuHTe3a XTTS-v2
Data Preparation Stage Average Quality Impact
Loss
Initial training with unprocessed 2.67 Baseline performance
recordings
After noise removal and amplitude 2.59 Measurable improvement
normalization

Data preprocessing yielded measurable quality improvements reflected
in approximately 3% reduction in training loss. Systematic noise elimination
and amplitude standardization enabled the model to focus learning capacity on
linguistically relevant acoustic patterns rather than fitting recording artifacts
and volume inconsistencies present in heterogeneous source materials.

Extended training over 22 epochs with optimized hyperparameters
(batch size 1 with gradient accumulation of 64, learning rate Se-7, AdamW
optimizer) [31; 32] achieved final average loss of 2.486, representing
additional 4% improvement over initial preprocessing optimization. Training
was conducted on NVIDIA GeForce RTX 4060 GPU over approximately 19
hours. The trained synthesis system was deployed as a Telegram messaging
bot, providing accessible speech generation capabilities for Sakha language
users and demonstrating practical applicability of the developed technology.

Perceptual evaluation through informal listening tests confirmed
acceptable naturalness and intelligibility for most synthesized utterances.
Generated speech exhibited natural prosodic contours with appropriate phrase-
level intonation patterns and reasonable speaking rate. Phonetic accuracy
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proved particularly strong for Sakha vowel qualities, successfully reproducing
front rounded variants absent from the model’s primary pretraining languages.

Consonantal accuracy demonstrated greater variability, with occasional
substitution errors affectinguvular and glottal segments representing phonemes
rare in the multilingual pretraining distribution. Emotional expressiveness
remains limited, with generated speech exhibiting relatively neutral affect
regardless of textual content. These limitations represent priorities for future
development efforts.

Comparative Analysis and Discussion

Cross-architecture comparison reveals complementary strengths across
evaluated recognition systems. Whisper achieves superior raw accuracy
when computational resources permit comprehensive model adaptation,
benefiting from extensive multilingual pretraining providing rich acoustic and
linguistic knowledge transferable to Sakha. The 8% word error rate represents
exceptional performance for a low-resource language, approaching accuracy
levels typically observed only for high-resource languages with abundant
training data.

Wav2Vec2-BERT offers more computationally efficient training path
with competitive results through language model integration, achieving 13%
error rate with substantially lower resource requirements. This architecture may
prove preferable for deployment scenarios with constrained computational
budgets or when rapid iteration cycles are desired during system development.

Both recognition architectures substantially outperform baseline
expectations for low-resource scenarios, validating transfer learning efficacy
for Sakha speech processing. The synthesis system demonstrates viable
quality despite extremely limited training data, suggesting that neural vocoder
approaches effectively leverage cross-lingual acoustic knowledge to produce
intelligible speech from minimal language-specific resources.

Conclusions and Future Directions

This investigation systematically evaluated transformer-based neural
network approaches for speech recognition and synthesis in the Sakha
language, establishing benchmark results and identifying effective adaptation
strategies for this low-resource Turkic language. The comprehensive
experimental evaluation yields several principal findings with implications
for future research and practical system development.

Key conclusions from our experimental work include:

1. Complete fine-tuning of Whisper-large-v3 achieves 8% word error
rate, demonstrating that comprehensive encoder adaptation is essential for
optimal low-resource recognition performance. Partial fine-tuning strategies
substantially degrade accuracy.
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2. Wav2Vec2-BERT with statistical language model integration reaches
13% error rate, offering computationally efficient alternative with strong
accuracy suitable for resource-constrained deployment scenarios.

3. XTTS-v2 produces intelligible synthesis from minimal training data,
validating cross-lingual transfer learning effectiveness for speech generation
tasks in underrepresented languages.

— Ensemble meta-stacking combining Wav2Vec2-BERT and Whisper
outputs achieves 27% WER, demonstrating 21% relative improvement over
individual model baselines through learned hypothesis selection.

— Practical deployment through Telegram bot interface validates real-
world applicability of developed synthesis capabilities, providing accessible
voice generation for Sakha language community.

4. Data preprocessing quality significantly impacts both recognition and
synthesis performance, emphasizing importance of careful corpus curation
for low-resource language work.

These results confirm that contemporary neural architectures, when
appropriately adapted through transfer learning methodologies, can deliver
practical speech technology capabilities for linguistically underserved
communities despite severe data limitations. The methodological framework
and empirical benchmarks established herein provide foundation for continued
Sakha language technology advancement.

Future research directions include corpus expansion through
community crowdsourcing initiatives, integration of morphological analysis
for improved language modeling capturing Sakha agglutinative structure,
development of emotionally expressive synthesis capabilities, and exploration
of end-to-end speech translation systems connecting Sakha with major world
languages. Collaborative efforts across research institutions and community
organizations will accelerate progress toward comprehensive speech
technology infrastructure serving Sakha speakers.
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